Steroid bridging between cycles

Thus a local conformational change initiated by the agonist, but not antagonist binding results in a destabilization of the protein structure. This destabilization is not strong enough to denature the protein, but results in a long range effect across the protein affecting its active site several angstrom away from the ligand binding site. This is known as an allosteric mechanism. As a rule, agonists induce structure destabilization, while antagonists merely bind , but do not affect the protein structure (or trigger a conformational change that locks a protein in its inactive position). One way to visualize the action of ligands on receptors is to realize that proteins constantly undergo conformational changes which is best described as an equilibrium between an active and inactive, or even among multiple states, including desensitized states (different types of inactive states). Agonists and antagonists shift this equilibrium towards an active or inactive conformation, respectively.

Steroid bridging between cycles

steroid bridging between cycles

Media:

steroid bridging between cyclessteroid bridging between cyclessteroid bridging between cyclessteroid bridging between cyclessteroid bridging between cycles

http://buy-steroids.org