Steroidogenesis pathway ppt

cAMP follows a distinct route and activates a single PKA-AKAP complex close to the substrate to mediate a distinct biological effect. Accordingly, each substrate appears to have its own, private anchored pool of PKA and its own local gradient of cAMP. PKA inhibit the interaction of 14-3-3 proteins with BAD (through 14-3-3/BAD signaling) and NFAT to promote cell survival. PKA inhibits Adducin action by limiting its role during assembly of Spectrin-Actin network in erythrocytes, thereby reducing the chances of Erythroleukemia. It activates KDELR (KDEL (Lys-Asp-Glu-Leu) Endoplasmic Reticulum Protein Retention Receptor) to promote retrieval of proteins (protein retention) from golgi complex to endoplasmic reticulum thereby maintaining steady state of the cell. Increased cAMP levels promote survival of neuronal cells by inactivating GSK3Alpha (Glycogen Synthase Kinase-3-Alpha) and GSK3Beta (Glycogen Synthase Kinase-3-Beta) via a PKA dependent mechanism and thus prevents Oncogenesis and neurodegeneration ( & 15). PKA interferes at different levels with other signaling pathways. Inactivation of PTP (Protein Tyrosine Phosphatase) results in dissociation from and consequent activation of ERKs. Inactivation of PCTK1 (PCTAIRE Protein Kinase-1) and APC (Anaphase-Promoting Complex) helps to maintain control cell proliferation and anaphase initiation and late mitotic events, respectively, thereby checking the degradation cell cycle regulators. PKA activation by cAMP enhances release of stored energy in cells by phosphorylation of HSL (Hormone-Sensitive Lipase) in white adipose tissue, which leads to the hydrolysis of triglycerides (vital intermediates of Tricaylglycerol Metabolism). Hydrolysis of triglycerides by HSL generates free fatty acids, the major gateway for the release of stored energy, and this process is termed as Lipolysis. Gcg binds to on the surface of liver cells and triggers an increase in cAMP production leading to an increased rate of Glycogenolysis by activating PHK (Phosphorylase Kinase) via the PKA-mediated cascade. PHK further activate PYG (Glycogen Phosphorylase), which converts Glycogen to Glucose-1-Phosphate. Phosphoglucomutase then transfers phosphate to C-6 of Glucose-1-Phosphate generating Glucose-1,6-phosphate as an intermediate. The phosphate on C-1 is then transferred to the enzyme regenerating it and Glucose-6-Phospahte is the released product that enters Glycolysis. This is the same response hepatocytes have to Epinephrine release through the ADR-Alpha/Beta. PKA further inhibits GYS (Glycogen Synthase) leading to seizure of energy consuming process like Glycogen Synthesis ( & 16).

Steroid isolation , depending on context, is the isolation of chemical matter required for chemical structure elucidation, derivitzation or degradation chemistry, biological testing, and other research needs (generally milligrams to grams, but often more [38] or the isolation of "analytical quantities" of the substance of interest (where the focus is on identifying and quantifying the substance (for example, in biological tissue or fluid). The amount isolated depends on the analytical method, but is generally less than one microgram. [39] [ page needed ] The methods of isolation to achieve the two scales of product are distinct, but include extraction , precipitation, adsorption , chromatography , and crystallization . In both cases, the isolated substance is purified to chemical homogeneity; combined separation and analytical methods, such as LC-MS , are chosen to be "orthogonal"—achieving their separations based on distinct modes of interaction between substance and isolating matrix—to detect a single species in the pure sample. Structure determination refers to the methods to determine the chemical structure of an isolated pure steroid, using an evolving array of chemical and physical methods which have included NMR and small-molecule crystallography . [2] : 10–19 Methods of analysis overlap both of the above areas, emphasizing analytical methods to determining if a steroid is present in a mixture and determining its quantity. [39]

Plants , most bacteria , and some protozoa such as malaria parasites have the ability to produce isoprenoids using an alternative pathway called the methylerythritol phosphate (MEP) or non-mevalonate pathway . [8] The output of both the mevalonate pathway and the MEP pathway are the same, IPP and DMAPP, however the enzymatic reactions to convert acetyl-CoA into IPP are entirely different. In higher plants, the MEP pathway operates in plastids while the mevalonate pathway operates in the cytosol . [8] Examples of bacteria that contain the MEP pathway include Escherichia coli and pathogens such as Mycobacterium tuberculosis .

Cordycepin at an IC 50 of 200uM was able to induce dose-dependent growth inhibition possibly via G2/M-phase arrest in both 5637 and T-24 cell lines alongside downregulation of various molecules associated with G2/M phase (pCdc25c and Cdc25c, pCdc2 and Cdc2, cyclin B1). [46] p27 and p53 did not appeared to be involved in this arrest, with JNK activation by Cordycepin appearing to mediate the beneficial effects. [46] A concurrent reduction in AP-1, NF-kB, and MMP-9 genomic activity may accompany Cordycepin's actions in bladder cancer cells. [47]

Steroidogenesis pathway ppt

steroidogenesis pathway ppt

Cordycepin at an IC 50 of 200uM was able to induce dose-dependent growth inhibition possibly via G2/M-phase arrest in both 5637 and T-24 cell lines alongside downregulation of various molecules associated with G2/M phase (pCdc25c and Cdc25c, pCdc2 and Cdc2, cyclin B1). [46] p27 and p53 did not appeared to be involved in this arrest, with JNK activation by Cordycepin appearing to mediate the beneficial effects. [46] A concurrent reduction in AP-1, NF-kB, and MMP-9 genomic activity may accompany Cordycepin's actions in bladder cancer cells. [47]

Media:

steroidogenesis pathway pptsteroidogenesis pathway pptsteroidogenesis pathway pptsteroidogenesis pathway pptsteroidogenesis pathway ppt

http://buy-steroids.org